Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae.

نویسندگان

  • Jacob I Meyers
  • Meg Gray
  • Wojtek Kuklinski
  • Lucas B Johnson
  • Christopher D Snow
  • William C Black
  • Kathryn M Partin
  • Brian D Foy
چکیده

The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae).

The glutamate-gated chloride channel (GluCl) is a highly sensitive insecticide target of the avermectin class of insecticides. As an alternative to using chemical insecticides to kill mosquitoes, we tested the effects of purified immunoglobulin G (IgG) targeting the extracellular domain of GluCl from Anopheles gambiae (AgGluCl) on the survivorship of three key mosquito disease vectors: Anophele...

متن کامل

Characterization of Glutamate-Gated Chloride Channels in the Pharynx of Wild-Type and Mutant Caenorhabditis elegans Delineates the Role of the Subunit GluCl-a2 in the Function of the Native Receptor

Glutamate-gated chloride (GluCl) channels are the site of action of the anthelmintic ivermectin. Previously, the Xenopus laevis oocyte expression system has been used to characterize GluCl channels cloned from Caenorhabditis elegans. However, information on the native, pharmacologically relevant receptors is lacking. Here, we have used a quantitative pharmacological approach and intracellular r...

متن کامل

Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test

<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...

متن کامل

avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans.

Ivermectin is a widely used anthelmintic drug whose nematocidal mechanism is incompletely understood. We have used Caenorhabditis elegans as a model system to understand ivermectin's effects. We found that the M3 neurons of the C.elegans pharynx form fast inhibitory glutamatergic neuromuscular synapses. avr-15, a gene that confers ivermectin sensitivity on worms, is necessary postsynaptically f...

متن کامل

Haemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin.

Ion channels are targets for many drugs including insecticides and anthelminthic agents such as ivermectin (IVM) and moxidectin (MOX). IVM has been shown to activate glutamate-gated chloride channels (GluCls) from the free-living nematode, Caenorhabditis elegans. Haemonchus contortus is a parasitic nematode that is also extremely sensitive to IVM. The high sensitivity of H. contortus to IVM is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 218 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2015